TrueView II
Otoscopes ..................................................... 3

Otology instrument solutions
Richards and Explorent instruments .......... 4

Strapes surgery solutions
SMART piston technology ......................... 5
OtoMimix bone cement ................................. 6

ISJ surgery solutions
OtoMimix bone cement ................................ 7

Strapes surgery solutions
Micron titanium bucket handle ..................... 8

OCR surgery solutions
Dornhoffer implant system .......................... 9
OtoMimix PORP and TORP ......................... 10
Kartush strut system .................................... 11
Micron monolithic implant system ............... 12
Micron adjustable implant system ............... 13

Ordering information
Featured products .................................. 14
Instruments ............................................ 15
Packing solution .................................... 15

Otoscopes
The 2.7 mm TrueView II telescopes are based on an outstanding lens system. It is the combination of superior optical performance and durable mechanical design that makes Olympus telescopes something special.

The 1.9 mm TrueView II telescopes are fully autoclavable and very durable thanks to Olympus advanced fibre technology.

For the physician this means:

- Superior optical quality
- High resolution
- Bright images
- Brilliant colour reproduction
- Durable mechanical design
- Ergonomic design

TRUEVIEW II

2.7 mm TrueView II telescopes are based on an outstanding lens system. It is the combination of superior optical performance and durable mechanical design that makes Olympus telescopes something special.

The 1.9 mm TrueView II telescopes are fully autoclavable and very durable thanks to Olympus advanced fibre technology.

For the physician this means:

- Superior optical quality
- High resolution
- Bright images
- Brilliant colour reproduction
- Durable mechanical design
- Ergonomic design
OTOLOGY INSTRUMENT SOLUTIONS

Richards and Explorent instruments

Olympus offers the Richards and Explorent lines of hand-held stainless steel surgical instruments.

The extensive line of otology procedure-specific instruments specialising in stapes, OCR and ISJ procedures. We focus on providing precise and dependable instruments for the ENT specialty and assemble the right otology instrument set for you. Please contact Olympus.

STAPES SURGERY SOLUTIONS

SMart piston technology

Olympus offers nitinol, a shape-memory alloy, for middle-ear use.

The reason stapes surgery is challenging is that there is little tolerance for error. SMart piston technology incorporates our patented ‘self-crimping’ nitinol alloy which simplifies stapes surgery by taking the worry out of crimping.

- Nitinol (nickel-titanium alloy) is a shape-memory metal alloy that has been used in medical applications for years. Since nitinol ‘self-fashions’ with heat, the crimping manoeuvre is dramatically simplified.¹
- The SMart De La Cruz piston simplifies stapes surgery with its self-measuring body. This self-measuring feature improves a surgeon’s ability to measure implant length accurately.
- The SMart malleus-to-footplate piston is used for revision stapes cases. The surgeon simply positions the shaft at the footplate and the end of the wire loop between the malleus and elevated tympanic membrane.
- MRI-compatible up to 3 Tesla.

OtoMimix bone cement
Olympus offers the only hydroxyapatite bone cement indicated for middle-ear use.

OtoMimix Hydroxylapatite (HA) bone cement can be used during revision and primary stapes surgery to keep the prosthesis properly positioned around the vestibule. In revision stapes, OtoMimix extends and connects the piston loop and the distal incus remnant.

- OtoMimix is packaged in a convenient 2.0 gram size and is easily applied using a Rosen needle. A small area of the mucosal layer on the lenticular process of the incus should be removed where OtoMimix is to be applied. Typical working time for OtoMimix is two to four minutes, and it will be hard to the touch after five to seven minutes.\(^2\)


**ISJ SURGERY SOLUTIONS**

OtoMimix bone cement
Olympus offers the only hydroxyapatite bone cement indicated for middle-ear use.

- OtoMimix ‘bridges the gap’ for incudo-stapedial joint discontinuity. OtoMimix HA bone cement can be used to reconstruct the conductive component by placing a small aliquot of the cement on the discontinuity.

- OtoMimix is packaged in a convenient 2.0 gram size and is easily applied using a Rosen needle. A small area of the mucosal layer on the lenticular process of the incus should be removed where OtoMimix is to be applied. Typical working time for OtoMimix is two to four minutes, and it will be hard to the touch after five to seven minutes.
Micron titanium bucket handle

With its micron titanium bucket handle, Olympus introduced commercially available stapes implants.

The classic bucket handle is now available in titanium featuring our patented micron finish. The patented micron titanium finish smooths all surfaces, reducing the potential for extrusion due to sharp angles. This proprietary chemical process not only smooths the surface but “dulls” it, which reduces glare.

- Titanium is thought to provide excellent sound conduction even at higher frequencies because of its small mass.
- Titanium has excellent handling properties, is well tolerated by tissue and it is MRI-compatible up to 3 Tesla.

Dornhoff implant system

Olympus offers hydroxylapatite middle-ear implants.

The Dornhoff implant system combines three-point stability:

At the stapes, the malleus and at the footplate.

- The Dornhoff interpositional offers stability at the stapes and malleus. The titanium cradle locks onto the superstructure of the stapes and accommodates an intact stapedial tendon. The hydroxylapatite head is designed with a malleus notch for enhanced stability at the malleus.
- The 2.0 mm size has been found to fit 95% of all patients.

OtoMimix PORP and TORP

The OtoMimix PORP and TORP is Olympus’ solution for stability in ossiculoplasty. It is the first hydroxylapatite bone cement to be used with the hydroxylapatite middle-ear implants.

- Hydroxylapatite is one of the most biocompatible materials for implant use. Because its chemical composition resembles that of real bone, it is well tolerated by the human body.
- OtoMimix can be used to provide stability at the malleus by connecting the prostheses head to the malleus.

Kartush strut system

The Kartush strut system is the simple solution for providing stability in ossicular chain reconstruction using hydroxylapatite struts.4

- The self-locking nature of the strut design provides added stability, while the simplicity of the strut design allows for excellent visualisation.
- The strut prostheses are placed beneath the malleus, which minimises the possibility of extrusion and locks them in place. When the malleus is absent, the Kartush strut can be combined with a cartilage cap.
Micron monolithic implant system

Micron titanium was developed to help reduce glare.

The micron all-titanium monolithic system is available in centred and off-centred orientations to maximise visualisation. The open head design is tiltable to facilitate implant placement and handling. Our patented micron titanium finish smoothes all surfaces reducing the potential for extrusion due to sharp angles. This proprietary chemical process not only smoothes the surface but ‘dulls’ it, which reduces glare.

- The tiltable head design easily conforms to the drum angle.
- The slit superstructure provides stability of the PORP onto the stape superstructure and cradles an intact stapedial tendon.

Micron adjustable implant system

Micron titanium is exclusively available through Olympus.

The micron adjustable titanium implant system provides stability in an all-titanium TORP and PORP.

- Sizing at the time of implantation allows for flexibility while requiring minimal stocking units.
- For added stability at the footplate, the Dornhoffer titanium footplate shoe is designed for use with 0.9 mm titanium-shafted TORPs.
### Featured products

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG70145927</td>
<td>SMart Piston (0.6 x 4.25 mm)</td>
</tr>
<tr>
<td>EG70142057</td>
<td>SMart De La Cruz piston (0.6 x 6.0 mm)</td>
</tr>
<tr>
<td>EG70142038</td>
<td>SMart malleus to footplate piston (0.6 x 6.0 mm)</td>
</tr>
<tr>
<td>EG70142141</td>
<td>The classic bulb handle in micron titanium (narrow piston diameter 0.4 x 4.0 mm large 1.0 mm well diameter)</td>
</tr>
<tr>
<td>EG70141014</td>
<td>Dornhoffer interpositional PORP</td>
</tr>
<tr>
<td>EG70143254</td>
<td>Dornhoffer titanium footplate shoe (designed for use with 0.8 mm TORP shafts made of Hapex, Plasti-Pore and HA)</td>
</tr>
<tr>
<td>EG70142004</td>
<td>Micron titanium monolithic centred PORP (stabile head)</td>
</tr>
<tr>
<td>EG70141045</td>
<td>Micron titanium adjustable centred TORP (2.0–10.0 mm range and 3.0 mm head diameter)</td>
</tr>
<tr>
<td>EG70143253</td>
<td>Dornhoffer titanium footplate shoe (designed for use with 0.9 mm titanium TORP shafts)</td>
</tr>
<tr>
<td>EG140853</td>
<td>Kartun incus-shapes strut (short 2.75 mm)</td>
</tr>
<tr>
<td>EG140855</td>
<td>Kartun incus-shapes strut (short 5.76 x 5.3 mm)</td>
</tr>
<tr>
<td>EG70143266</td>
<td>OtoMix (2.0 gram)</td>
</tr>
<tr>
<td>EG130726</td>
<td>Rosen needle (tul)</td>
</tr>
<tr>
<td>A70963A</td>
<td>Telescops, autoaversable, 30° direction of view, wide-angle field of view, 70 mm working length</td>
</tr>
<tr>
<td>A7050A</td>
<td>Telescops, autoaversable, 0° direction of view, 65 mm working length</td>
</tr>
<tr>
<td>A7050A</td>
<td>Telescops, autoaversable, 0° direction of view, 65 mm working length</td>
</tr>
</tbody>
</table>

### Instruments

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG130003</td>
<td>Richards posigator straight serrated positive locking jaws 4.0 mm, 70.0 mm oboyn</td>
</tr>
<tr>
<td>EG130004</td>
<td>Richards posigator straight serrated positive locking jaws 4.0 mm, 70.0 mm oboyn</td>
</tr>
<tr>
<td>EG130725</td>
<td>Richards Rosen needle sharp disposable box</td>
</tr>
<tr>
<td>EG130726</td>
<td>Richards Rosen needle blunt disposable box</td>
</tr>
<tr>
<td>EG250005</td>
<td>Rosan round knick 45°, intradental diameter = 1.5 mm</td>
</tr>
<tr>
<td>EG254200</td>
<td>Wullstein needle slight curved, 15 cm</td>
</tr>
<tr>
<td>EG253000</td>
<td>Wullstein needle, straight</td>
</tr>
<tr>
<td>EG251500</td>
<td>Wullstein needle, flat</td>
</tr>
<tr>
<td>EG255006</td>
<td>Micro pick 90°, 0.6 mm, 16.5 cm</td>
</tr>
<tr>
<td>EG272601</td>
<td>House curette, 17 cm, oval cups, 1.1 x 1.5, 1.3 x 1.8 mm</td>
</tr>
<tr>
<td>EG276114</td>
<td>Joseph scissors, 14.0 cm, sharp/sharp, curved</td>
</tr>
<tr>
<td>EG272200</td>
<td>Helms forceps, pointed, straight 15.0 cm</td>
</tr>
<tr>
<td>EG200011</td>
<td>Wulstein retractor, 11.0 cm, 3 x 3 prongs, sharp</td>
</tr>
<tr>
<td>EG127002</td>
<td>Hartmann ear forceps, cup 2.0 mm diameter</td>
</tr>
<tr>
<td>EG279500</td>
<td>Micro cup-shaped forceps oval, straight</td>
</tr>
</tbody>
</table>

### Packing solution

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG299300</td>
<td>Silastic sheeting, blue, 0.125 mm thick</td>
</tr>
<tr>
<td>EG7060860</td>
<td>Blu ear packing with shaving 12.0 x 15.0 mm in hydrated state</td>
</tr>
<tr>
<td>EG140320</td>
<td>Rosette packing, width 4.0 mm, thickness 0.15 mm, length 35.0 mm</td>
</tr>
<tr>
<td>EG140322</td>
<td>Rosette packing, width 13.0 mm, thickness 0.13 mm, length 35.0 mm</td>
</tr>
</tbody>
</table>